
 using System; using System;
 using System.Collections.Generic; using System.Collections.Generic;
 using Microsoft.Xna.Framework; using Microsoft.Xna.Framework;
 using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Audio;
 using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Content;
 using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.GamerServices;
 using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Graphics;
 using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Input;
 using Microsoft.Xna.Framework.Net; using Microsoft.Xna.Framework.Net;
 using Microsoft.Xna.Framework.Storage; using Microsoft.Xna.Framework.Storage;
 namespace WindowsGame1 namespace WindowsGame1
 { {
 /// <summary> /// <summary> /// <summary>
 /// This is the main type for your game /// This is the main type for your game
 /// </summary> /// </summary> /// </summary> /// </summary>
 public class Game1 : Microsoft.Xna.Framework.Game public class Game1 : Microsoft.Xna.Framework.Game
 { {
 GraphicsDeviceManager graphics; GraphicsDeviceManager graphics;
 SpriteBatch spriteBatch; SpriteBatch spriteBatch;
 public Game1() public Game1()
 { {
 graphics = new GraphicsDeviceManager(this); graphics = new GraphicsDeviceManager(this);
 Content.RootDirectory = “Content”; Content.RootDirectory = “Content”;
 } }
 /// <summary> /// <summary> /// <summary>
 /// Allows the game to perform any /// Allows the game to perform any
 initialization it needs to before
 starting to run. starting to run.
 /// This is where it can query /// This is where it can query
 for any required services and for any required services and
 load any non-graphic load any non-graphic
 /// related content. Calling /// related content. Calling
 base.Initialize will enumerate
 through any components through any components
 /// and initialize them as well. /// and initialize them as well.
 /// </summary> /// </summary> /// </summary> /// </summary>
 protected override void Initialize() protected override void Initialize()
 { { {
 // TODO: Add your initialization // TODO: Add your initialization
 logic here logic here
 base.Initialize(); base.Initialize();
 } }
 /// <summary> /// <summary> /// <summary>
 /// LoadContent will be called once /// LoadContent will be called once
 per game and is the place to load per game and is the place to load
 /// all of your content. /// all of your content.
 /// </summary> /// </summary> /// </summary> /// </summary>
 protected override void LoadContent() protected override void LoadContent()
 { {
 // Create a new SpriteBatch, // Create a new SpriteBatch,
 which can be used to draw textures.
 spriteBatch = new SpriteBatch(GraphicsDevice); spriteBatch = new SpriteBatch(GraphicsDevice);
 // TODO: use this.Content to load your game content here // TODO: use this.Content to load your game content here

A wealth of open-source and freeware tools and
middleware are now available to games companies.
3D World explores the new open-source pipelines,

and meets the studios who are trying
to democratise game development

D
riven by a technology arms race, the games

development industry now regularly works with

budgets in the millions, spending huge sums on

tools, staff and time in a bid to create software

that will capture the public’s imagination. While this has

provided consumers with a choice of titles boasting

incredibly high production values, it’s also helped foster a

very different, indie-level style of game development.

By reducing development costs and taking advantage of

the various cheaper publishing opportunities now available

(ranging from budget and self-publishing to digital

distribution via services like Steam and Xbox Live Arcade),

smaller development teams have fewer professional and

creative restrictions and are able to work effi ciently on

projects closer to their own hearts – and to those of a

substantial number of gamers looking for an alternative

to those big-buck epics. And when it comes to reducing

development costs, there are few solutions more effective

than making use of tools and code that don’t cost a cent.

When it comes to the development workfl ow, there

is open-source software (OSS) and freeware available to

handle just about every task, from version control right

through to scripting and compiling (see ‘The open-source

pipeline’, overleaf). Artists are particularly well catered for.

Free for all

August 2008 3D WORLD | 035

BY MARK RAMSHAW

● A world of possibilities: game development
with free and open-source tools ranges from
titles like Project Apricot (main image), created
entirely with open-source software, to free
development frameworks released by major
commercial companies, such as Microsoft’s
XNA Game Studio (overlaid code)

